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ABSTRACT
The easy sharing of multimedia content on social media has caused
a rapid dissemination of fake news, which threatens society’s sta-
bility and security. Therefore, fake news detection has garnered
extensive research interest in the field of social forensics. Current
methods primarily concentrate on the integration of textual and
visual features but fail to effectively exploit multi-modal informa-
tion at both fine-grained and coarse-grained levels. Furthermore,
they suffer from an ambiguity problem due to a lack of correlation
between modalities or a contradiction between the decisions made
by each modality. To overcome these challenges, we present a Multi-
grained Multi-modal Fusion Network (MMFN) for fake news detec-
tion. Inspired by the multi-grained process of human assessment
of news authenticity, we respectively employ two Transformer-
based pre-trained models to encode token-level features from text
and images. The multi-modal module fuses fine-grained features,
taking into account coarse-grained features encoded by the CLIP
encoder. To address the ambiguity problem, we design uni-modal
branches with similarity-based weighting to adaptively adjust the
use of multi-modal features. Experimental results demonstrate that
the proposed framework outperforms state-of-the-art methods on
three prevalent datasets.
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1 INTRODUCTION
Online social networks, such as Twitter and Weibo, have largely
replaced traditional forms of information communication repre-
sented by newspapers and magazines. Despite the convenience
they offer to users, including the ability to seek out friends and
share viewpoints, these networks have also facilitated the rapid
and widespread dissemination of fake news [16, 25, 47]. Compared
to traditional written materials, online news posts are more sus-
ceptible to manipulation. Moreover, readers can be easily influ-
enced by well-crafted fake news and may inadvertently further
its spread.The consequences of fake news include the creation of
panic, the misdirection of public opinion, and negative impacts on
society. With hundreds of millions of social media users generating
a vast amount of posts constantly, the use of traditional, inefficient
manual review methods is not feasible for mitigating the threat of
fake news. In response, many researchers in the field of computer
science have recently focused on developing methods for detecting
fake news [2, 7, 21, 24, 29].

Early works on fake news detection primarily focused on ana-
lyzing either text-only or image-only content [5, 9]. These works
typically verify the logical and semantic coherence of the input and
took into account trivial indicators, such as grammatical errors or
traces of image manipulation. Although uni-modal approaches are
effective, modern news articles and posts often include multiple
modalities that are inter-related, hence, these methods overlook
such correlations. For instance, a real image can be combined with
total rumors and correct words can be used to describe a tampered
image. Given this, multi-modal feature analysis is necessary to offer
complementary benefits for fake news detection. In recent years,
there have been many works that combine multi-modal features to
detect anomalies in news [7, 16, 35, 41]. Despite the advancements
made in the field, current approaches face two significant challenges.
First, though many works come up with novel fusion methods, they
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Fake: Netizens broke the news 

that there were beggars begging 

with camels on the streets. The 

camel in the picture has its 

limbs amputated from the 

knee and can only lie on the 

ground. 

Real: The love continues to 

pass! Let love fill the world!

Figure 1: Examples of the two challenges faced by current
works. Upper: multi-grained information is required to de-
tect misinformation (the blue box represents matched el-
ements and the red box represents mismatched elements).
Lower: weak correlation between text and image may pre-
vent users/models from finding cross-modal clues.

merely fuse them at holistic post level, inevitably missing some
detailed information; Or they only consider the matching between
entities, tokens, or regions, neglecting global semantic correlation.
This results in suboptimal utilization of information across different
granularities. Second, many works rely excessively on multi-modal
fusion features, thus suffer from the ambiguity problem, i.e. incon-
sistency caused by inter-modal conflict or weak correlation.

Figure 1 illustrates two examples in the Weibo dataset that
demonstrate the aforementioned two challenges. The upper im-
age in Figure 1 depicts the process of multi-grained fake news
detection, wherein neither uni-modal feature of the text nor image
is capable of verifying authenticity. First, readers of the post would
pay attention to the objects in the image and entities in the text. For
the examples given, people would first see the beggar and camel
in the picture, and the words beggar, begging, camel, amputation,
knee and lie in the text. At this time, other than matched elements
(marked as blue region), they would find the three words amputa-
tion, knee and lie do not match the image content (marked as red
region). Subsequently, they will comprehend the semantic meaning
of the sentence and image as a whole, perform an analysis to de-
termine whether the two match, and finally, arrive at a conclusion
regarding the authenticity of the news. Many existing works tend
to ignore this point. The lower image of Figure 1 is an example
that illustrates the ambiguity and is also a common type of post
on social media. The visual objects and the textual entities in the
post have no matching relationship and are semantically unrelated.
The user who posts this post may only be expressing their feelings.
Manual review can easily determine that this is not a fake news and
is not harmful. However, models that over-emphasize multi-modal
fusion may misjudge it due to the mismatches in the multi-modal
features. As a result, the post may not pass the automatic review
process of social software and may not be published smoothly. At
this point, analyzing uni-modal content and emotions is sufficient
to evaluate the credibility of the post, and multi-modal fusion fea-
tures are not necessary and may even add noise to the classification

task. To address this issue, Chen et al. [7] proposed CAFE that first
compresses the image and text and contrasts the news that has the
correct image-text pairs to learn byminimizing the Kullback-Leibler
(KL) divergence. Then, the corresponding cross-modal ambiguity
score is used to reweight the multimodal features. However, as only
limited data is input into the network, their alignment of multi-
modal features cannot be guaranteed. Furthermore, they process
uni-modal features through variational autoencoders with non-
shared weights, so we cannot determine if the KL divergence is
reliable enough to measure cross-modal ambiguity. Thus, resolving
the ambiguity problem remains a motivation for our research work.

To address the above-mentioned issues, this paper proposes the
Multi-grained Multi-modal Fusion Network (MMFN).The MMFN
approach integrates uni-modal features and a multi-grained multi-
modal fused feature for more accurate fake news detection. MMFN
encodes text and image using pre-trained BERT [11] and Swin
Transformer (Swin-T) [19] models respectively, which extract fine-
grained information at the token level. The pre-trained CLIP [27]
model is utilized to encode coarse-grained features and capture se-
mantic information at the post level, which is further used to address
the ambiguity problem. We propose a multi-grained multi-modal
fusion module to perform granularity-level fusion on multi-modal
features, in which fine-grained features are fed into co-attention
Transformer (CT) blocks for generating aligned fine-grained multi-
modal features, coarse-grained features are used for evaluating the
cross-modal correlation. This module adjust the usage of multi-
modal features dynamically, mitigating the ambiguity problem.

The contributions of this paper are mainly three-folded, namely:
• WeproposeMMFN, which implements the idea of processing
multi-modal features at different levels of granularity to
form a comprehensive representation that reflects both the
detailed and global aspects of the news.

• We specifically design two uni-modal branches and adopt
CLIP pre-trained model to evaluate cross-modal correlation,
further address the problem brought by scenario with high
cross-modal ambiguity.

• We conduct comprehensive experiments on three famous
datasets, where MMFN outperforms state-of-the-art fake
news detection methods. What’s more, ablation studies ver-
ify the effectiveness of granularity-level processing andmulti-
modal features adjustment.

2 RELATEDWORKS
2.1 Fake News Detection
Modalities refer to information perceived by different propagation
channels that human communication is adapted to [3]. Fake news
detection methods could be categorized by utilized modal as uni-
modal and multi-modal fake news detection, tons of work has been
done on both methods based on deep learning in recent years.

While uni-modal features like text content plays a key role in
distinguishing fake news [22, 46], correlation and consistency of
multi-modal features are also vital. Earlier works design sophis-
ticated yet black-box attention mechanisms for multi-modal fea-
ture fusion [4, 5, 16]. Singhal et al. integrate pre-trained XLNet
ResNet respectively for text and feature extraction. The features are
then concatenated for the final binary classification [30]. Singhal
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et al. [32] propose the Spotfake using VGG and BERT to extract
features, which is then improved in Spotfake+ [30] for full-length
article detection. Wang et al. [35] propose an event advisory neu-
ral network, namely EANN, which tries to extract shared features
among news of different events. Many other works [7, 16, 41] also
propose better fuison of extracted features from different modalities
before sending them into a classifier.

Compared with uni-modal methods, multi-modal methods not
simply have extra image features, but have more potential informa-
tion underneath multi-modal contents for mining. Some works try
to excavate potential information from the datasets. Qi et al. [24]
claim former works neglect information that cannot be extracted
by a pre-trained extractor, such as entities and texts within images.
Thus, they manually extract these information as supplement of
text content. Zhang et al. [43] design a novel dual emotion feature
descriptor to measure the emotional gap between the publisher and
comments and further verify that dual emotion is distinctive be-
tween fake and real news. Allein et al. [2] propose DistilBert, which
uses latent representations of news articles and user-generated
content to guide model learning. Wang et al. [36] propose KMGCN
that integrates textual, visual, and knowledge information into a
unified framework to model semantic representations and improve
accuracy Further, Abdelnabi et al. [1] use online search engine to
gather relevant Web evidence and propose Consistency-Checking
Network to mimic human reasoning process.

Except from mining information, planning better multi-modal
representations’ interaction is vital for better detection performance.
SAFE [44] calculates the relevance between news textual and vi-
sual information. MCAN [38] stacks multiple co-attention layers
to fuse the multi-modal features. Qian et al. [26] use BERT to pro-
duce hierarchical semantics of text, and use ResNet to produce
regional image representations. Then different levels of semantics
are fed into co-attention layers with regional image features to
achieve hierarchical multi-modal feature fusion. FND-CLIP [45]
uses CLIP-exctracting features as multimodal represention and
designs a modal-wise attention to aggregat features.

2.2 Pre-trained Model
Vaswani et al. [34] propose Transformer, which quickly become
the state-of-the-art method in many NLP tasks. Subsequently, De-
vlin et al. [11] propose BERT, a large Transformer-based model
pre-trained on large corpora. Transformer-based image processing
methods also gained merits in their fields. However, a simple appli-
cation of self-attention to images would require quadratic cost in
the number of pixels, causing a problem with input sizes of realistic
images. Dosovitskiy et al. [12] directly apply a Transformer archi-
tecture on non-overlapping medium-sized image patches for image
classification, namely ViT. On top of that, Liu et al. [19] propose
Swin-T combining convolution layer with proposed Swin-T layers,
achieving linear increase in complexity with image size. Swin-T
focuses on general-purpose performance rather than specifically
on classification like ViT, yet still achieves the best speed-accuracy
trade-off among other methods on image classification.

In the past decade, multi-modal machine learning has received
considerable attention in the research community [3]. Neural ar-
chitectures are employed in tasks that go beyond single modalities,

for example, Visual Question Answering (VQA) [10], Visual Com-
monsense Reasoning (VCR) [40], etc. In these tasks, priors and
features from different modalities are required and algorithms or
deep networks cannot be effective when provided with only a single
modality. Several generic technologies are developed for learning
joint representations of image content and natural language. For ex-
ample, CLIP [27] is a multi-modal model that combines knowledge
of language concepts with semantic knowledge of images. Benefit-
ing from the contrastive learning paradigm, the textual and visual
features extracted by CLIP can be considered to be aligned in the
same semantic space, which can reflect the correlation between the
textual content and visual content of news. The CLIP-based Multi-
modal learning has been used in a lot of downstream tasks [8, 37].
Other multi-modal models, such as Glide [23] and VilBERT [20],
have also been utilized for tasks such as text-to-image generation
and cross-modal representation learning.

3 METHOD
In this paper, we propose MMFN to improve the accuracy of multi-
modal fake news detection via multi-grained multi-modal fusion.
The network design of MMFN is shown in Figure 2, which consists
of multi-modal feature encoder, multi-grained feature fusion, uni-
modal branches and modality weighting via CLIP similarity, and
fake news classifier.

3.1 Multi-modal Feature Encoder
Textual Feature Encoding via BERT. BERT [11] is a popular
pre-trained language model built on Transformer that is trained
using unsupervised learning on a large corpus and has achieved
excellent results in many NLP downstream tasks. Therefore, we use
a BERT model to encode features from T. The textual content of a
news post, which is the concatenation of text and optical character
recognition (OCR) extraction from an image, is a sequential list
of words denoted as T =

[
𝑡1, 𝑡2, . . . , 𝑡𝑛𝑤

]
, where 𝑛𝑤 is the number

of words. After applying BERT to T, the encoded textual feature
T𝑏 =

[
𝑡𝑏1 , 𝑡

𝑏
2 , . . . , 𝑡

𝑏
𝑛𝑤

]
is obtained, where 𝑡𝑏

𝑖
∈ R𝑑𝑏 is the output for

the last hidden state of the 𝑖−th token in the text embedding and
𝑑𝑏 is the dimension of the word embedding.
Visual Feature Encoding via Swin-T. Swin-T [19] is a vision
Transformer that produces a hierarchical feature representation
based on shifted window self-attention and achieves state-of-the-art
performance on many CV tasks such as object detection and seman-
tic segmentation. In this paper, we introduce Swin-T to the task
of fake news detection. Given the visual content V ∈ R𝑤×ℎ , Swin-
T transforms it to a sequence embeddings Vs =

[
𝑣𝑠1, 𝑣

𝑠
2, . . . , 𝑣

𝑠
𝑛𝑝

]
,

where 𝑤 and ℎ are the width and height of the image, 𝑣𝑠
𝑖
∈ R𝑑𝑠

is the hidden-states at the output of the last layer of the model
corresponding to the 𝑖−th window of the input, 𝑛𝑝 is the number of
patch in Swin-T, and 𝑑𝑠 is the hidden size of the visual embedding.
Multi-modal Feature Encoding via CLIP. CLIP is pre-trained
on a massive and diverse dataset, and can embed texts and images
into a uniform mathematical space, making it naturally propitious
to calculate the cross-modal correlation. Besides, experiments have
shown the model’s robustness in dealing with distribution shift,
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Figure 2: The architecture of the MMFN. BERT, Swin-T, and CLIP are used to encoded the features of different modalities of
multi-modal news. Encoded features of different granularities are fused through CT and projection heads. CLIP similarity
score is calculated to weight different modal features adaptively for the classifier to classify fake news.

making it suitable for fake news detection even in zero-shot scenar-
ios [27]. Manyworks [13, 18] have shownCLIP’s great ability in gen-
eralizing to unknown fields. Therefore, we use CLIP multi-modal
features to enrich the global correlation information of textual and
visual features. Given the multi-modal news X = {T,V}, we denote
the CLIP-encoded features as X𝑐 = [𝑡𝑐 , 𝑣𝑐 ], where 𝑡𝑐 , 𝑣𝑐 ∈ R𝑑𝑐 are
two vectors of length 𝑑𝑐 .

3.2 Multi-grained Feature Fusion
Fine-Grained Fusion via Transformer. Since BERT and Swin-
T are not multi-modal models, there is a large gap between the
features they extract, which cannot directly realize information in-
teraction. To effectively fuse the textual and visual features of posts,
we use a CT [20] to achieve information inter-modal complementar-
ity. As shown in Figure 2, CT consists of a multi-headed attention
network and a feed forward neural network, both followed by a
residual connection and a layer normalization.

We denote different modal inputs as 𝐼1 and 𝐼2, respectively. In
CT, 𝐼1 is used as queries 𝑄 , and 𝐼2 is used as keys 𝐾 and values 𝑉 .
CT computes the co-attention matrix of each head as:

ℎ𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(𝐼1𝑊 𝑞

𝑖
) (𝐼2𝑊 𝑘

𝑖
)𝑇

𝑑ℎ
)𝐼2𝑊 𝑣

𝑖 , (1)

where the projection matrices𝑊 𝑞

𝑖
,𝑊 𝑘

𝑖
,𝑊 𝑣

𝑖
∈ R𝑑𝑚×𝑑ℎ , 𝑑ℎ = 𝑑𝑚/𝑚,

and 𝑑𝑚 is the dimension of the CT model, while𝑚 is the number
of heads.

The multi-head attention is the concatenation of all co-attention
matrices following a projection matrix:

𝐻 = (ℎ1;ℎ2; · · · ;ℎ𝑚)𝑊 𝑜 , (2)

where symbol ; represents the concatenate operation and𝑊 𝑜 ∈
R𝑑𝑚×𝑑𝑚 .

After 𝐻 and 𝐼1 pass through the FFN with two layer normaliza-
tion, an attention-based multi-modal representation 𝐻 ′ is obtained:

𝐻 ′ = Norm(𝐼1 + FFN(Norm(𝐼1 + 𝐻𝐼1))). (3)

Finally, the multi-modal representation 𝐻 ′ is average pooled to
a feature vector 𝐹 as the output of CT:

𝐹 = CT(𝐼1, 𝐼2) = 𝐻 ′. (4)

In our model, after the inputs BERT and Swin-T features T𝑏 ,V𝑠

are mapped to the same dimension R𝑑𝑚 through linear layers, they
are input into a shared weighted CT in different front and rear
order as 𝐼1 and 𝐼2 to obtain the output features, a visual attention
weighted textual feature 𝐹 𝑣𝑡 and a textual attention weighted visual
feature 𝐹 𝑡𝑣 , respectively:{

𝐹 𝑣𝑡 = CT((T𝑏𝑊 𝑡 ), (V𝑠𝑊 𝑣))
𝐹 𝑡𝑣 = CT((V𝑠𝑊 𝑣), (T𝑏𝑊 𝑡 )) , (5)
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where𝑊 𝑡 ∈ R𝑑𝑏×𝑑𝑚 and𝑊 𝑣 ∈ R𝑑𝑠×𝑑𝑚 .
MCAN [38] and HMCAN [26] also use Transformer to fuse fea-

tures. There are structural and functional differences between the
CT in MMFN and the Transformers in HMCAN and MCAN. MCAN
takes the pooled feature vectors as the input to the stacked co-
attention blocks, which outputs a coarse-grained modality corre-
lation vector; while the attention structure of MMFN is calculated
at the token level and outputs fine-grained fused features. The
Transformer in HMCAN consists of a single-head self-attention
to enhance intra-modal information and another one to capture
inter-modal information; considering BERT and Swin-T already
use self-attention to achieve intra-modal interaction, to avoid im-
pacting pre-training model and alleviate the overfitting problem,
CT of MMFN only includes a multi-head co-attention to achieve
inter-modal interaction. In addition, the Transformers in HMCAN
do not share weights, while Transformers of MMFN share weights
to make CT have the function of modal alignment.
Coarse-grained Fusion via CLIP and Multi-modal Represen-
tation Generation. We fuse the CLIP-encoded features as robust
coarse-grained features that reflect the global semantic correlation
information. It can be assumed that the outputs 𝑡𝑐 and 𝑣𝑐 of the CLIP
encoders have effectively eliminated the inter-modality gap through
contrastive learning. This allows subsequent network learning to
effectively utilize the information from different modalities.

Specifically, 𝑡𝑐 and 𝑣𝑐 are concatenated and fed into a feed for-
ward neural network with a linear layer, a batch norm layer, and a
𝑅𝑒𝐿𝑈 activation function. Additionally, 𝐹 𝑣𝑡 and 𝐹 𝑡𝑣 are also con-
catenated and fed into another feed forward neural network with
the same architecture. Thus, after two feed forward networks, we
have the fused multi-modal fine-grained feature𝑀 𝑓 and the coarse-
grained feature𝑀𝑐 :{

𝑀 𝑓 = FFN1 (𝐹 𝑣𝑡 ; 𝐹 𝑡𝑣)
𝑀𝑐 = FFN2 (𝑡𝑐 ; 𝑣𝑐 )

. (6)

Finally, the multi-modal features𝑀 𝑓 and𝑀𝑐 are concatenated
and fed into a projection head Φ𝑀 to generate the multi-modal
representation. Each element in the output vector will be multiplied
by a similarity score, whichwill be introduced in the next paragraph.
The generated multi-modal representation is denoted as 𝐹𝑚 :

𝐹𝑚 = similarity · Φ𝑀 (𝑀 𝑓 ;𝑀𝑐 ). (7)

3.3 Uni-modal Branches and Modality
Weighting via CLIP Similarity

Multi-modal fused features generally reflect the correlation infor-
mation between the two modalities, which is easily affected by
ambiguity. To solve the problem that the feature representation
ability of multi-modal fusion decreases when the modal is of high
ambiguity, we designed a uni-modal textual branch and a uni-modal
visual branch respectively.

For the textual branch, we pool the BERT features into a feature
vector on the dimension of token level, concatenate it with the
CLIP-text feature vector, then pass it through a projection head
consisting of two fully connected networks with 𝑅𝑒𝐿𝑈 activation
functions to get the uni-modal textual representation; similarly, for
the visual branch, we concatenate the pooled Swin-T features with
the CLIP-image feature, and obtain the uni-modal visual through

a projection head mapping with the same structure but different
parameters as the textual branch’s:{

𝐹 𝑡 = Φ𝑇 (T𝑏 ; 𝑡𝑐 )
𝐹 𝑣 = Φ𝑉 (V𝑠 ; 𝑣𝑐 )

, (8)

where Φ𝑇 and Φ𝑉 are the projection heads.
If we directly send the uni-modal branch representations to

the classifier for making the decision, the classifier may be more
inclined to use the multi-modality representation with deeper net-
work to fit the results, while the uni-modal branch could interfere
with the decision and cause more serious ambiguity problems. To
overcome such limitations, inspired by CAFE, we use the CLIP
cosine similarity as a coefficient weighting the multi-modal feature
to guide the classifier’s learning process. The cosine similarity is
calculated as follows:

similarity =
𝑡𝑐 · (𝑣𝑐 )𝑇
∥𝑡𝑐 ∥ ∥𝑣𝑐 ∥ . (9)

3.4 Fake News Classifier
After obtaining the fused multi-modal representation, uni-modal
text representation, and uni-modal visual representation, we con-
catenate them as the input to a classifier and get the output 𝑦
representing the probability of a news being fake:

𝑦 = FNC(𝐹𝑚 ; 𝐹 𝑡 ; 𝐹 𝑣), (10)

where FNC(·) is the fake new classifier consisting of a two-layer
fully connected network with 𝑅𝑒𝐿𝑢 activation function.

The objective function is to minimize the cross-entropy loss to
correctly predict the real and fake news.

L = 𝑦 log (𝑦) + (1 − 𝑦) log (1 − 𝑦) , (11)

where 𝑦 is the ground truth label.

4 EXPERIMENTS
4.1 Experimental Setup
Dataset. We use three public real-world datasets collected from
social media, namely, Weibo [14], Twitter [6], and Gossipcop [29].

Weibo is a widely used Chinese dataset in fake news detection.
The real news was collected from Xinhua News Agency, an author-
itative news source of China. In experiments, the uni-modal news
posts with no image or no text description were filtered out. The
training set contains 3, 783 real news and 3, 675 fake news, and the
test set contains 1,685 news.

The Twitter dataset was released for MediaEval Verifying Multi-
media Use task [6] and is also a well-known multi-modal dataset for
fake news detection. In experiments, following existing works we
filter the tweets with videos attached and the non-English tweets.
After filtering, the training set contains 4, 031 real news and 5, 139
fake news, and the test set contains 1, 406 posts.

Gossipcop dataset is a English full-length article news dataset
collected from the entertainment domain of FakeNewsNet [29]
repository. Gossipcop contains 10, 010 training news, including 7,
974 real news and 2, 036 fake news. The test set has 2, 285 real news
and 545 fake news.
Implementation Details. In our experiments, we set 𝑑𝑚 = 512
and𝑚 = 8 for the CT. The textual embedding dimension of BERT
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Table 1: Performance comparison between MMFN and state-of-the-art methods on Weibo, Twitter, and Gossipcop datasets.
The best performance is highlighted in bold.

Method Accuracy Fake News Real News
Precision Recall F1-score Precision Recall F1-score

Weibo

Spotfake [32] 0.892 0.902 0.964 0.932 0.847 0.656 0.739
CAFE [7] 0.840 0.855 0.830 0.842 0.825 0.851 0.837
MCAN [38] 0.899 0.913 0.889 0.901 0.884 0.909 0.897
LIIMR [31] 0.900 0.882 0.823 0.847 0.908 0.941 0.925

HMCAN [26] 0.885 0.920 0.845 0.881 0.856 0.926 0.890
MMFN 0.923 0.921 0.926 0.924 0.924 0.920 0.922

Twitter

Spotfake [32] 0.777 0.751 0.900 0.820 0.832 0.606 0.701
CAFE [7] 0.806 0.807 0.799 0.803 0.805 0.813 0.809
MCAN [38] 0.809 0.889 0.765 0.822 0.732 0.871 0.795
LIIMR [31] 0.831 0.836 0.832 0.830 0.825 0.830 0.827

HMCAN [26] 0.897 0.971 0.801 0.878 0.853 0.979 0.912
MMFN 0.935 0.960 0.856 0.905 0.924 0.980 0.951

Gossipcop

SAFE [44] 0.838 0.758 0.558 0.643 0.857 0.937 0.895
Spotfake+ [30] 0.858 0.732 0.372 0.494 0.866 0.962 0.914
DistilBert [2] 0.857 0.805 0.527 0.637 0.866 0.960 0.911
CAFE [7] 0.867 0.732 0.490 0.587 0.887 0.957 0.921
MMFN 0.894 0.799 0.598 0.684 0.910 0.964 0.936

is set to 𝑑𝑏 = 768, and we use the “bert-base-chinese” model for
Chinese data and the “bert-base-uncased” model for English data.
The input text length is set to 300 words, i.e., 𝑛𝑤 = 300. For the
Swin-T, we use the “swin-base-patch4-window7-224” model to en-
code visual features and set the input image size to 224 × 224. The
number of patches in Swin-T is 𝑛𝑝 = 49 and the dimension of the
visual embedding is 𝑑𝑠 = 1024. The input image size for CLIP is
also set to to 224 × 224. Science CLIP has not pre-trained Chinese
text model, we use Google Translation API [15] to translate Chi-
nese texts to English. We use a summary generation model [28]
to generate summary statements for texts longer than 50 words
to meet the input size requirements of CLIP. The used pre-trained
CLIP model is “ViT-B/32” with feature dimension of 𝑑𝑐 = 512. We
fine-tune BERT and Swin-T during the training stage, while freez-
ing the parameters of CLIP due to its difficulty in training on small
datasets. Similar to MCAN [38], we freeze the BERT model on the
Twitter dataset to alleviate overfitting. The feed forward network
1 and the feed forward network 2 have hidden size of 256, and
the projection heads had hidden units of 256 and 16, respectively.
The hidden sizes of the two fully conneced layers in the classifier
are 48 and 2, respectively. The batch size is set to 16. The dataset
was pre-processed to remove all invalid messages after "@", "#",
and "http:". The Adam optimizer [17] was utilized with the default
parameters. Aside from fine-tuning BERT and Swin Transformer
using a learning rate of 1 × 10−5, the learning rate for the network
was set to 1 × 10−3. The model is trained for 100 epochs with early
stopping to prevent over-fitting.

4.2 Performance Comparison
We compare the performance of MMFN with other state-of-the-
art methods and the comparison results are presented in Table 1.
The evaluation metrics are accuracy, precision, recall, and F1-score,
which are commonly used to measure the performance of a binary

classification problem. As shown in Table 1, MMFN outperforms
the other methods across all three datasets in terms of Accuracy.
Specifically, MMFN achieves the highest accuracy of 92.3%, 93.5%,
and 89.4%, respectively, on the three real-world datasets, surpassing
the state-of-the-art method by 2.3%, 3.8%, and 2.7%. In terms of
precision, recall, and F1 score, MMFN ranks either first or second
on nearly all tests, showcasing its effectiveness.

The comparedmethods, SAFE, Spotfake, DistilBert and Spotfake+
have limitations in their methods for fake news detection. SAFE
learns similarity between text and visuals, but may misclassify real
posts with weak correlation as fake news due to ignoring ambiguity.
DistilBert guides the detection by checking the effect of user-related
constraints on article latent space, yet it neglects visual information
of news thus lead to less competitive performance. Spotfake and
Spotfake+ simply concatenate textual and visual representations
without adequate cross-modal interaction and fusion, leading to
suboptimal performance. CAFE defines and utilizes cross-modal
ambiguity to alleviate the problem of disagreement between differ-
ent modalities. It achieves better experimental results than Spotfake,
Spotfake+, and SAFE on the Twitter and Gossipcop datasets.

LIIMR achieves improved results on the Weibo dataset due to
its ability to capture fine-grained salient image and text features.
The decent experimental results of MCAN and HMCAN prove the
effectiveness of the Transformer-based multi-modal fusion net-
work. However, these approaches concentrate only on fine-grained
feature mining, neglecting the coarse-grained information that pro-
vides insight into global semantics.

The superiority of MMFN over the other methods can be at-
tributed to three factors. 1) The Swin-T component is capable of
extracting fine-grained features that complement the features gen-
erated by the BERT encoder. Additionally, the pre-trained CLIP
encoder is capable of generating coarse-grained text and image
features that possess rich semantic information within a shared
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Table 2: Ablation study on modalities, granularities, and architecture designs of MMFN on Weibo, Twitter, and Gossipcop
datasets. The best performance is highlighted in bold.

Method Accuracy Fake News Real News
Precision Recall F1-score Precision Recall F1-score

Weibo

MMFN w/o T 0.825 0.846 0.815 0.830 0.803 0.836 0.819
MMFN w/o V 0.901 0.859 0.940 0.898 0.944 0.868 0.904
MMFN w/o F 0.818 0.793 0.839 0.815 0.844 0.800 0.821
MMFN w/o C 0.909 0.914 0.907 0.911 0.904 0.912 0.908
MMFN w/o CT 0.905 0.849 0.959 0.900 0.963 0.861 0.909
MMFN w/o U 0.912 0.939 0.891 0.915 0.884 0.934 0.908
MMFN w/o W 0.906 0.921 0.895 0.908 0.890 0.917 0.903

MMFN 0.923 0.921 0.926 0.924 0.924 0.920 0.922

Twitter

MMFN w/o T 0.933 0.963 0.850 0.903 0.919 0.981 0.949
MMFN w/o V 0.739 0.691 0.580 0.630 0.762 0.839 0.799
MMFN w/o F 0.866 0.993 0.708 0.826 0.805 0.996 0.891
MMFN w/o C 0.882 0.817 0.817 0.817 0.913 0.913 0.913
MMFN w/o CT 0.900 0.965 0.885 0.923 0.793 0.932 0.857
MMFN w/o U 0.918 0.929 0.835 0.880 0.913 0.965 0.938
MMFN w/o W 0.915 0.960 0.810 0.879 0.893 0.979 0.934

MMFN 0.935 0.960 0.856 0.905 0.924 0.980 0.951

Gossipcop

MMFN w/o T 0.836 0.702 0.255 0.374 0.846 0.974 0.905
MMFN w/o V 0.888 0.818 0.536 0.648 0.898 0.972 0.933
MMFN w/o F 0.862 0.691 0.517 0.592 0.891 0.945 0.917
MMFN w/o C 0.885 0.844 0.495 0.624 0.890 0.978 0.932
MMFN w/o CT 0.888 0.756 0.615 0.678 0.912 0.953 0.932
MMFN w/o U 0.885 0.799 0.539 0.644 0.898 0.965 0.932
MMFN w/o W 0.889 0.764 0.611 0.679 0.911 0.968 0.933

MMFN 0.894 0.799 0.598 0.684 0.910 0.964 0.936

semantic space. This allows for complementary feature represen-
tation at both fine and coarse granularities. 2) The CT component
enables inter-modal interaction at the token level, thus facilitating
the fine-grained fusion of multiple modalities. 3) The utilization of
uni-modal branches with CLIP-based weighting effectively miti-
gates the issue of ambiguity.

4.3 Ablation Studies
We evaluate the impact of the key components in MMFN on its
performance by conducting experiments with various and partial
configurations of the model. For each experiment, we remove a
different component and retrain the model from scratch. The com-
pared variants of MMFN are implemented as follows:

1) MMFN w/o T. The text-related modules are removed and only
the uni-modal visual features encoded by Swin-T and CLIP image
coder are used.

2) MMFN w/o V. The visual-related modules are removed, and
only the uni-modal textual features encoded by BERT and CLIP
text coder are retained.

3) MMFN w/o F. The BERT-related and Swin-T-related modules
are removed, and the fine-grained features are not utilized. Instead,
the CLIP-coded text and image features are directly concatenated
into a multi-modal representation, and the two CLIP features are
used as two separate uni-modal representations.

4) MMFN w/o C. The CLIP-related modules are removed, and
the coarse-grained features are not employed. The classification
process is performed using only fine-grained features.

5) MMFN w/o CT. The CT module is removed, and the features
encoded from BERT and Swin-T are directly concatenated.

6) MMFN w/o U. The textual and visual uni-modal branches are
removed, and only the multi-modal fused representation is used
for classification.

7) MMFN w/o W. The CLIP-weighting modules are removed,
and the multi-modal fused feature is not weighted.
Contributions from Different Modalities. To assess the contri-
butions of different modalities to the overall performance of MMFN
model, we compare the results of MMFN w/o T and MMFN w/o
V with the completed MMFN model. The results indicate that the
performance of MMFN decreases when either the visual or textual
modality is absent. This suggests that both modalities are crucial
for the final performance of the model.

Additionally, we found that the performance of MMFN w/o T
is poor on the Weibo and Gossipcop datasets, but second-best on
the Twitter dataset. On the other hand, MMFN w/o V performs
poorly on the Twitter dataset, but outperforms the MMFN w/o T
and some multi-modal ablated models on Weibo and Gossipcop.
These observations indicate that: 1) The distribution of news on
different datasets and different social media platforms is diverse.
For instance, the text of Weibo news contains rich clues for fake
news detection, while Twitter users tend to express information
through images. Meanwhile, the main information in long news on
Gossipcop is located in the text, while images play aminor role. This
implies that uni-modal models may have difficulties adapting to
different social environments. 2) The uni-modal models outperform
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several of the ablated multi-modal models, suggesting that multi-
modal learning is effective only when the cue information from
different modalities is adequately mined and integrated using an
effective mechanism.
Influence of Different Granularities. To analyze the effect of
different granularities on the performance of themodel, we compare
the results of MMFN w/o C and MMFN w/o F with the completed
MMFN model. The results show that both coarse-grained and fine-
grained features contribute to the performance of the model. The
performance of the model decreases more when the fine-grained
features are removed than when the coarse-grained features are
removed. This suggests that fine-grained features play a more im-
portant role in the final performance of the model. The suggestion
follows our intuition, and mining more fine-grained features to
detect fake news is the direction of the recent works like LIIMR
and HMCAN, etc. However, the results of the ablation study shows
that the coarse-grained features is useful to assist the fine-grained
features to improve the detection ability.
Effectiveness of Each Component. To evaluate the effectiveness
of each component in the MMFN model, we compare the results of
the completed MMFN model with the ablated models MMFN w/o
CT, MMFN w/o U, MMFN w/o W. As can be seen in Table 2, the
following observations are made: 1)The integration of visual and
textual modalities through the CT module enhances the represen-
tation capability and fine-grained feature fusion, which is reflected
in the improved performance of the complete model compared to
the MMFN w/o CT. 2) The Completed MMFN model outperforms
MMFN w/o U, demonstrating the effectiveness of the uni-modal
branch designed to handle ambiguity in improving the performance.
3) The results also show that both the complete MMFN model and
MMFN w/o U outperform MMFN w/o W on the Weibo and Twit-
ter datasets, indicating that weighting the fusion features helps
alleviate ambiguity. On the other hand, simply adding uni-modal
branches without weighting may harm performance. Overall, the
results suggest that the full combination of components is necessary
for achieving the best performance of the MMFN model.

4.4 T-SNE Visualizations
In Figure 3, we further analyze the separability of the different
modal representations learned by MMFN and its variants on Weibo
using t-SNE [33] visualizations. The visual, textual, multi-modal,
and completed representations are obtained from MMFN w/o T,
MMFN w/o I, MMFN w/o U, and completed MMFN, respectively.
The dots of the same color indicate instances of the same label.

The visual representations learned by MMFN w/o T have some
overlap with those of different labels, suggesting that the visual
information alone is not sufficient for classification on Weibo. On
the other hand, the textual representations learned by MMFN w/o
I show a relatively better separability compared to the visual rep-
resentations, indicating that the textual information can provide
some discriminative information for the classification task.

The multi-modal representations learned by MMFN w/o U are
more separable compared to the visual representations and are
slightly better in separability to the textual representations. This
indicates that the combination of textual and visual information can
provide complementary information and improve the separability

(a) Visual representations (b) Textual representations

(c) Multi-modal representa-
tions (d) Completed representations

Figure 3: T-SNE visualizations of the different modal repre-
sentations on the test dataset of Weibo.

of the representations. However, due to the absence of uni-modal
branches, MMFN w/o U isn’t as effective as the completed model.
Finally, the representations learned by the completed MMFN show
the best separability among all the variants, surpassing the sep-
arability of multi-modal representations. This suggests that the
proposed method is effective in handling the usage of multi-modal
representations to addressing the ambiguity problem, which signif-
icantly enhances the separability.

Overall, these results demonstrate not only the importance of
combining both visual and textual information for fake news de-
tection on Weibo, but also the effectiveness of the proposed fusion
method in organizing multi-grained multi-modal representations.

5 CONCLUSIONS
In this paper, we present a novel multi-modal fake news detec-
tion method called MMFN, which uses BERT and Swin-T with a
Transformer to obtain fine-grained multi-modal feature and uses
CLIP to acquire coarse-grained multi-modal feature. In addition,
we introduce uni-modal branches with CLIP similarity weighting
to adaptively assist multi-modal classification. We conduct compre-
hensive experiments on two well-known datasets for multi-modal
fake news detection. The results show that MMFN outperforms
many of the state-of-the-art methods.
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